
����������
�������

Citation: Du, X.; Aristizabal-Henao,

J.J.; Garrett, T.J.; Brochhausen, M.;

Hogan, W.R.; Lemas, D.J. A Checklist

for Reproducible Computational

Analysis in Clinical Metabolomics

Research. Metabolites 2022, 12, 87.

https://doi.org/10.3390/metabo

12010087

Academic Editor: Sebastian Böcker

Received: 10 December 2021

Accepted: 10 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Review

A Checklist for Reproducible Computational Analysis in
Clinical Metabolomics Research
Xinsong Du 1 , Juan J. Aristizabal-Henao 2, Timothy J. Garrett 3 , Mathias Brochhausen 4, William R. Hogan 1

and Dominick J. Lemas 1,*

1 Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida,
Gainesville, FL 32610, USA; xinsongdu@ufl.edu (X.D.); hoganwr@ufl.edu (W.R.H.)

2 BERG LLC, Framingham, MA 01701, USA; juan.henao@berghealth.com
3 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida,

Gainesville, FL 32610, USA; tgarrett@ufl.edu
4 Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences,

Little Rock, AR 72205, USA; mbrochhausen@uams.edu
* Correspondence: djlemas@ufl.edu; Tel.: +1-(352)294-5971

Abstract: Clinical metabolomics emerged as a novel approach for biomarker discovery with the
translational potential to guide next-generation therapeutics and precision health interventions.
However, reproducibility in clinical research employing metabolomics data is challenging. Checklists
are a helpful tool for promoting reproducible research. Existing checklists that promote reproducible
metabolomics research primarily focused on metadata and may not be sufficient to ensure repro-
ducible metabolomics data processing. This paper provides a checklist including actions that need to
be taken by researchers to make computational steps reproducible for clinical metabolomics studies.
We developed an eight-item checklist that includes criteria related to reusable data sharing and
reproducible computational workflow development. We also provided recommended tools and
resources to complete each item, as well as a GitHub project template to guide the process. The
checklist is concise and easy to follow. Studies that follow this checklist and use recommended
resources may facilitate other researchers to reproduce metabolomics results easily and efficiently.

Keywords: clinical research; metabolomics; reproducibility; checklist; reusable data; reproducible
workflow

1. Introduction
1.1. Clinical Metabolomics

Metabolomics is the systematic study of small molecules (i.e., metabolites, which are
less than 1500 Daltons and nonpeptides) within cells, biofluids, tissues, or organisms [1,2].
Metabolites represent the downstream output of the genome and the upstream of the
environment and have the closest relationship with cell phenotype compared with that
of other omics [3]. Clinical metabolomics emerged as a novel approach for biomarker
discovery with the translational potential to guide next-generation therapeutics and pre-
cision health interventions [4]. For instance, metabolomics was used to identify reasons
for side effects and discontinuation of tamoxifen, a medicine to treat breast cancer [5].
Metabolomics imaging was used together with magnetic resonance imaging to identify
biomarkers of colon cancer [6]. Metabolomics was also employed to identify biomarkers
for multiple other diseases such as diabetes [7] and hepatocellular carcinoma [8], develop
drugs such as Enasidenib and Ivosidenib [9], and guide dietary intake [10]. Notably, in the
era of coronavirus disease 2019 (COVID-19), metabolomics can be used to develop more
advanced diagnostic techniques such as detecting the COVID-19 virus from exhaled air [11].
Metabolomics was also used to identify biomarkers for prognosis and diagnose COVID-19
with bio-fluids [12], as well as predicting the severity level [13]. Although metabolomics
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is increasingly popular, the literature is flooded with small-scale and preliminary-type
studies, many of which also suffer from poor experimental design or statistical validity [4].
Therefore, clinical metabolomics studies with large sample sizes and diverse samples, as
well as standardized and robust experimental design, are needed to validate previous
findings before results can be reliably applied in real life [2,9,14].

1.2. Reproducibility Issue

Reproducibility is challenging for metabolomics research, especially for large-scale
ones [15], which is partly due to its high complexity and lack of methodological standard-
ization [15–18]. For example, Lin et al. recently conducted an interlaboratory metabolomics
study regarding reproducibility. They used two labs to process the same sample. The
two labs used the same sample preparation protocol but different instrumentation, data
processing software, and database, which is a common situation. It turned out that for
all metabolites identified by the two labs, only less than half of them were the same [19].
Metabolomics study is complicated, and each step can introduce artifacts into results and
hurt reproducibility [19]. However, reproducibility is a must for a novel diagnostic test,
vaccine, or treatment to be approved by U.S. Food and Drug Administration (FDA) and
used in real life [20–22]. Therefore, this article focuses on reproducibility improvement of
clinical metabolomics study.

1.3. The Checklist

The checklist is a helpful tool to reduce complexity and improve research reproducibil-
ity [23]. A checklist is defined as a “list of action items, tasks, or behaviors arranged
in a consistent manner, which allows the evaluator to record the presence or absence of
the individual listed item” [24]. The checklist was widely used in many situations, such
as preventing aircraft accidents and avoiding adverse events in medicine [25]. Relevant
checklists were proposed in research fields such as artificial intelligence in dental health
research [26] and ecological niche modeling [27].

To improve clinical metabolomics research reproducibility, researchers proposed check-
lists for research metadata reporting. In 2005, the metabolomics standard initiative (MSI)
was formed by leading experts in the metabolomics field [28]. Two years later, several
minimum reporting standards (i.e., minimum information checklists [29]) were developed.
Summer et al. proposed a minimum reporting standard (MRS) for chemical analysis
aspects of metabolomics research, including sample preparation, experimental analysis,
quality control, metabolite identification, and data preprocessing [30]. In the same year,
Goodacre et al. proposed an MRS specifically for statistical analysis in metabolomics re-
search [31]. Morrison et al. proposed an MRS to report metadata information about bio-
logical samples in metabolomics research from an environmental context [32]. Griffin et al.
developed an MRS for the description of the biological context of a metabolomics study
involving mammalian subjects [33]. Werf et al. also created an MRS for the description
of biological information but for metabolomics studies involving microbial or in vitro bi-
ological subjects [34]. Fiehn et al. proposed an MRS for metabolomics studies related to
plants [35]. Rubtsov et al. developed an MRS for metabolomics research using the NMR
data acquisition technique [36]. In 2013, Snyder et al. proposed checklists for metadata
reporting for proteomics research and metabolomics research to improve the reproducibil-
ity of omics study [37]. In 2020, Long et al. proposed a checklist for metadata reporting
of metabolomics studies regarding biomarker discovery [38]. In 2021, Considine et al.
argued that the minimum reporting standard developed in 2007 lacked logical flow about
data analysis, making it impossible to follow. Then, they created a new checklist and
an R markdown template for metadata reporting of data analysis steps in metabolomics
research [39]. Recently, Metabolomics standaRds Initiative in Toxicology (MERIT) was
launched to develop a minimum reporting standard for clinical metabolomics research
in regulatory toxicology [40]. Now it is more than a decade after the minimum reporting
standards were proposed in 2007. Nevertheless, several studies found they were poorly fol-
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lowed [29,41,42], which is partly because the information included was overwhelming [39].
A good checklist should be concise [43]. Additionally, existing checklists for reproducibility
improvement of clinical metabolomics research were all about metadata reporting. Actions
enabling reusable data sharing and reproducible computational workflow development
are needed for reproducibility improvement [44,45] but not covered in existing checklists.

1.4. Objective

This review firstly covers existing checklists highlighting the metabolomics workflow
metadata reporting (Section 2) and then synthesized an eight-item concise checklist, in-
cluding actions that a researcher can take to facilitate reusable data sharing (Section 3) and
reproducible computational workflow development (Section 4).

2. Workflow

A typical workflow for clinical metabolomics study includes sample preparation,
data acquisition, data processing, and data interpretation [46], which is summarized in
Figure 1. As we can see, clinical metabolomics studies are very complicated and feature
many complex computational workflows with various techniques to generate their results.
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Figure 1. Overview of metabolomics study workflow. Workflow includes steps of sample preparation,
data acquisition, data processing, and data interpretation. Each step has multiple substeps, and each
substep has several techniques that can be used. Minimum information checklists were proposed to
guide metadata reporting for purpose of reproducibility improvement. Some example items included
in existing minimum checklists are shown in blue column of figure.
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2.1. Sample Preparation
2.1.1. Overview

Sample preparation includes sample collection, transportation, biobanking and label-
ing, and metabolite extraction [47]. The requirements and difficulty of sample preparation
depend on the sample type and the target disease. Some commonly used samples include
blood plasma and serum, urine, saliva, solid tissues, and cultured cells [47]. Notably, even
slight variations in this step can affect metabolite stability, influence analytical results, and
hurt research reproducibility and credibility [48,49].

2.1.2. Sample Collection

Sample collection is the first and most critical step in clinical metabolomics studies [50],
whose quality can determine the quality level of subsequent research [50]. Metadata
recommended by existing checklists for reporting include items such as number of sampling
replicates, time of collection, species, organ, and cell type [30,35].

2.1.3. Transportation

Collected samples may need to be transported for storage, and stored samples may
need to be transported to an analytical laboratory [51]. Maintaining an excellent environ-
mental condition (low temperature) and rapid inhabitation of enzymatic activity (quench-
ing) is essential for preventing quick degradation activity during the process [52]. Sample
transportation is recommended to be described as part of the metadata [30].

2.1.4. Biobanking and Labeling

Biobanks store biological samples used for research purposes based on approved
protocols [49]. A standardized sample labeling and biobanking approach are vital for
research reproducibility [53]. Laboratory information management systems (LIMS) were
developed for standardization and reproducibility improvement [54,55]. In terms of clinical
metabolomics research example, Rasmussen et al. investigated metabolomics biomarkers
of colorectal cancer in blood and used a LIMS named Freezerworks for storage manage-
ment [56]. Concerning metadata reporting, an existing checklist recommended disclosing
information of storage conditions [30].

2.1.5. Metabolite Extraction

Metabolite extraction is the process that separates metabolites from undesired com-
pounds, making the sample and the analyst into a form that is suitable for instrumental
analysis [57]. Effective metabolite extraction is required for a successful metabolomics
study [58]. The most commonly used extraction approaches are solid-phase extraction
(SPE) and liquid-liquid extraction (LLE) [59]. In terms of basic procedures in SPE, a so-
lution is firstly loaded onto a solid phase, such as a cartridge containing the sorbent
capable of retaining the target analysis. Then, undesired components are washed away.
Finally, desired analytes with another solvent are eluted into a collection tube [60]. Clinical
metabolomics studies were conducted with SPE. For instance, Chen et al. used SPE in the
process of identifying metabolite biomarkers of lung cancer from exhaled volatile organic
compounds [61]. LLE uses water-immiscible solvents to extract interesting analytes from
aqueous solutions [62]. Regarding clinical metabolomics research with LLE, Liu et al.
used it to investigate the relationship between metabolic alterations and obesity [63]. An
existing checklist recommended reporting metadata such as extraction solvent, extraction
concentration, extract enrichment, extract cleanup and additional manipulation, and extract
storage and transportation [30].

2.2. Data Acquisition
2.2.1. Overview

Data acquisition is performed after sample preparation, which consists of instrumental
analysis [64] and file format conversion [64].
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2.2.2. Instrumental Analysis

Instrumental analysis can be done via nuclear magnetic resonance (NMR) or mass
spectrometry (MS). NMR measures the frequency emitted from atoms when an external
magnetic field is removed. It can produce a spectrum based on the molecular structure
of the compound [65]. MS measures the mass to charge ratio (m/z) of a molecule by
introducing a magnetic field to charged molecules [66]. Various mass spectrometric ion
separation/detection approaches are commonly implemented in targeted and nontargeted
metabolomics. These are largely driven by the available instrumentation, objectives, hy-
potheses, and scope of a study. Broadly speaking, this includes high-resolution MS (e.g.,
using orbitrap or time-of-flight instrumentation) and low-resolution MS (typically using
triple-quadrupole mass spectrometers) [67]. High-resolution MS is often used in discovery
and nontargeted studies and can provide quantitative and qualitative results. Conversely,
triple-quadrupole MS-based methods can only provide nominal-mass spectra but con-
tain a defined list of analytes that can be quantitatively measured with high selectivity
and sensitivity. Additionally, “known unknowns” can potentially be characterized ret-
rospectively in high-resolution nontargeted datasets that implement data-dependent or
data-independent MS/MS, but not in triple-quadrupole (targeted) studies [68]. MS can
also be coupled to orthogonal analyte separation techniques, and thus be further catego-
rized into gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass
spectrometry (LC-MS), and matrix-assisted laser desorption/ionization mass spectrometry
(MALDI-MS). In GC-MS, samples are vaporized into the gas phase and separated into
various components with a capillary column coated with a stationary phase. GC uses an
inert carrier gas such as helium or nitrogen to propel the vaporized samples; then, the
mixture’s components are separated. Next, the components or compounds are eluted from
the column, and the time of elution is recorded as retention time (RT), which depends on
the boiling point (volatility) and polarity. GC-MS is famous for providing high-confidence
metabolite annotation [69]; vast GC-MS libraries are publicly available [70,71]. It separates
the sample components and introduces them to the MS [72]. Retention time (RT) measures
a specific ion or molecule’s time to pass through the column [73]. LC-MS is similar to
GC-MS but uses liquid as the mobile phase in the column. Raw GC-MS or LC-MS data
includes m/z, RT, and intensities of peaks [74]. Each peak in the raw data can be an ion,
adduct, fragment, or isotope of a metabolite, and one metabolite may be represented by
several peaks [75]. MALDI-MS uses a laser energy-absorbing matrix to generate ions from
large molecules with minimal fragmentation [76], often used for solid samples such as
tissues. Although the above approaches can be used in several fields such as toxicology
and proteomics, we focused on the metabolomics field in this review. Some example
metadata that need to be reported for this step include the description of the instrument
and separation parameters [30].

2.2.3. File Format Conversion

File format conversion is needed when the acquired data files cannot be consumed by
the spectral processing software that the researcher has. Popular software for this purpose
is ProteoWizard-msConvert [64]. ProteoWizard-msConvert is currently at version 3, it can
convert vendor-specific binary metabolomics data files to open-format files, which can be
processed with freely available software tools. It provides both graphical user interface
(GUI)- and console-based versions. In a recent clinical metabolomics study conducted by
Hoegen et al., inborn error of metabolism was analyzed in the study, and ProteoWizard-
msConvert was used for metabolomics data file format conversion [77]. Methods used for
file format conversion need to be reported as metadata based on the existing checklist [30].

2.3. Data Processing
2.3.1. Overview

After data acquisition, data files will be produced in the computer and ready for further
processing. Metabolomics data processing includes data preprocessing, data preparation,
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and statistical analysis [46]. Some popular computational tools (non-commercial) for
metabolomics data processing include MZmine [78], XCMS [79], MetaboAnalyst [80],
OpenMS [81], and MS-DIAL [82]. MZmine is an open-source, downloadable software
written in JAVA. It supports Windows, Linux, and MacOS. It provides a graphical user
interface (GUI) as well as console mode. Recently, Teruya et al. used MZmine for LC-MS
metabolomics data processing when identifying metabolites related to dementia from
whole blood [83]. XCMS has two versions: web-based and downloadable. Researchers can
either upload their data to the webserver to analyze or use the R application programming
interface (API) locally. Altadill et al. conducted clinical metabolomics research, providing
evidence showing that metabolites presented in exosomes-like vesicles could help with
explaining the molecular basis of disease progression. Their study used XCMS for LC-MS
metabolomics data processing [84]. MetaboAnalyst also provides both web-based and
downloadable versions. Liu et al. identified 12 amino acids whose levels are different
between Moyamoya disease patients and healthy people; MetaboAnalyst was employed
for their metabolomics data analysis [85]. OpenMS is an open-source tool that can process
LC-MS metabolomics data. It provides C++ and Python API and supports Windows,
Linux, and MacOS. OpenMS was recently used by McCall et al. to detect the metabolic
characteristics of fecal pellets from mice that had Chagas disease to identify the impact
of Trypanosoma cruzi infection on the gut microbiota [86]. MS-DIAL is open-source
software written in C#. It provides both GUI and console versions and supports both
Windows and Linux operating systems. MS-DIAL was used by Klont et al. to process
LC-MS metabolomics data for the purpose of studying drug use [87]. The output of data
processing informs researchers about the intensity of identified metabolites in samples as
well as the difference between groups.

2.3.2. Data Preprocessing

Data pre-processing aims to identify peaks representing metabolites in study samples
from the raw spectrum. Traditional signal processing techniques are usually involved in the
process. Recently, deep learning methods, which is a subfield of artificial intelligence and
famous for image processing tasks [88], started to be tested for peak detection and achieved
promising performances [89–92]. According to an existing checklist, detailed methods
used in the process of metabolomics data preprocessing should be reported as part of
metadata [30]. Notably, the difference of injection order can cause retention time drift and
mass to charge drift. To address this issue, sample injection order should also be reported
as part of metadata. Signal intensity drift over time is another hurdle of reproducibility,
and standard quality control (QC) samples are often used for the correction. Therefore,
disclosing both sample injection order and standard QC sample information is critical to
ensure reproducible clinical metabolomics research [93]

2.3.3. Data Preparation

Data preparation makes some adjustments, such as normalization to values in the
peak table so that the table can be ready for better statistical analysis. Notably, the data
normalization method used can dramatically impact the downstream analysis, report-
ing specific technique used for normalization is important for reproducibility [94]. Some
popular normalization techniques for clinical metabolomics studies include median nor-
malization and normalization based on QC samples [95]. Median normalization assumes
there is no big change of most of metabolites across samples, and the technique aligns
the median signal of all metabolites across samples. QC-based normalization corrects
intensities based on QC sample signals, this technique can address the issue of run-order
and batch effects [95]. An important step, metabolite identification, is also involved in
this process. Metabolite identification can be achieved via matching m/z value, retention
time (RT), or MS/MS spectrum, which may produce identification results with different
confidence levels [96]. Based on an existing checklist [30], the confidence level of metabolite
identification is an essential part of metadata that needs to be reported for this step; other
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metadata such as measurements related to unknown metabolites need to be documented as
well. Additionally, m/z drift, RT drift, or other type of signal drift caused by injection-order
or batch effects may affect metabolite identification. Fortunately, statistical methods such as
non-linear curve fitting can correct the signal if batch information is known [97]. Therefore,
reporting information about technical batches as part of metadata is also very important.

2.3.4. Statistical Analysis or Machine Learning Analysis

Statistical analysis is performed after data preparation. The statistical analysis aims
to identify differences among groups of samples (e.g., samples from patients before and
after treatments) in terms of metabolite volume. Some commonly used statistical analysis
techniques include t-test and ANOVA [98]. Machine learning analysis can also be used in
place of traditional statistical analysis, including unsupervised technique: principal compo-
nent analysis (PCA); and supervised techniques: partial least squares discriminant analysis
(PLS-DA) [99], support vector machine (SVM), and random forests (RF) [100]. Based on
existing checklists, metadata such as the dimension of input data and if unsupervised
algorithm was used are minimum information that needs to be reported [31,39].

2.4. Data Interpretation
2.4.1. Overview

In terms of data interpretation, metabolite categorization, and metabolites literature
search are included.

2.4.2. Metabolite Categorization

Literature search aims to identify the relationship between interested metabolites and
the research topic. Scientific literature databases such as MEDLINE, Scopus, Google Scholar,
PubMed, and Web of Science are the ones that are usually used for searching manually.
Additionally, techniques such as natural language processing (NLP) emerge to automate
the process [101]. According to an existing checklist for metabolomics metadata reporting,
literature cited for interpreting the relationship between metabolites of interest and the
research topic must be disclosed [37].

3. Reusable Data Sharing

Two items in the checklist are related to reusable data sharing (Figure 2).

3.1. Deposit Data to a Public Metabolomics Data Repository

Making metabolomics data files publicly available is the first step towards reproducible
research. Sharing data with the publication is always recommended, but a previous study
showed that only a small portion of data from metabolomics research outputs was made
publicly available [102]. Many data repositories specifically designed for metabolomics
data were developed to facilitate data sharing, such as MetaboLights (https://www.ebi.ac.
uk/metabolights/, accessed on 29 November 2021) [103], Metabolomics Workbench (https:
//www.metabolomicsworkbench.org/, accessed on 29 November 2021) [104], and MassIVE
(https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp, accessed on 29 November
2021). Notably, these repositories also adhere to minimum reporting standards [42], which
promote data reusability. Numerous recently published clinical metabolomics studies
shared data with a public repository. For instance, Neef et al. investigated drug response
in colorectal cancer organoids with metabolomics technique and shared their data with
MetaboLights (MTBLS2130) [105]. Wu et al. employed a metabolomics technique to identify
why the drug Roxadustat as a novel hypoxia-inducible factor stabilizer can protect the
kidney from acute ischemic damage [106]. The data were also deposited to MetaboLights
with a unique identifier of MTBLS3003.

https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.metabolomicsworkbench.org/
https://www.metabolomicsworkbench.org/
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
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Eight items are included, which are categorized to reusable data sharing items and reproducible
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reproducibility improvement. Detailed explanation and example resources are also included on right
side of figure.

3.2. Present Metadata Clearly

To embrace reproducible research, in addition to depositing data and metadata online,
several journals such as Nature and Cell started requiring authors to submit and report
experimental metadata in the manuscript. Presenting metadata clearly in the manuscript is
another step towards reproducible research. A clear presentation means the presented infor-
mation can be understood immediately, and readers can absorb and apply it efficiently and
correctly [107]. STAR Methods from Cell Press is an excellent tool for clear scientific meta-
data presentation [108]. STAR (Structured, Transparent, Accessible Reporting) Methods is a
template introduced in the fall of 2016. It aims to reflect the changing needs of the scientific
community for increased clarity and transparency in reporting of approaches to foster rigor
and reproducibility in research. In 2019, STAR Methods was expanded to an open-access
journal named STAR Protocols. It is recommended to format the metadata and detailed
method following STAR Methods and submit the protocol to STAR Protocols. By doing so,
the method and protocol will be improved collaboratively by authors, reviewers, and edi-
tors, and reproducibility will be significantly improved [109]. Notably, STAR Methods was
used by clinical metabolomics studies. For instance, Li et al. conducted research to evaluate
the response to vaccination in humans, including metabolomics signatures [110]. Their
study protocol was described in their supplementary material following STAR Methods
formats. STAR Protocols also started to publish metabolomics protocols such as metabolite
detection in human embryonic stem cells [111]. The protocol was employed for related
research [112–114] and can improve the reproducibility of research. Therefore, to improve
reproducibility, it is recommended to present metadata clearly by writing a STAR Protocol
along with the clinical metabolomics research.
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4. Reproducible Computational Workflow Development

Six items are included in the checklist are for actions regarding reproducible computa-
tional workflow development (Figure 2).

4.1. Share Workflow Information with a Version Control System

It is recommended to share information of the computational workflow with ver-
sion control systems, which is a popular way for project management [115]. Addition-
ally, the order of using or executing the computational workflow components should
also be documented [45]. Commonly used platforms for computational resource shar-
ing include GitHub (https://github.com/, accessed on 29 November 2021), Bitbucket
(https://bitbucket.org/product, accessed on 29 November 2021), and GitLab (https://
about.gitlab.com/, accessed on 29 November 2021). In terms of an example clinical
metabolomics research, Alvarez–Mulett et al. investigated metabolomic signatures defin-
ing clinical outcomes in severe COVID-19 patients and shared workflow information
such as code on GitHub [116]. We also developed a GitHub template for this purpose:
https://github.com/lemaslab/reproducible_metabolomics_study_checklist, accessed on
29 November 2021.

4.2. Use Open-Source and Downloadable Software

To promote reproducible research, using open-source and downloadable software
is recommended. Nonavailability of code is a severe reproducibility impediment and
may prevent researchers from analyzing the reason for failing to reproduce the original
research [117,118]. A web-based (non-downloadable) software may hurt reproducibility by
precluding users from accessing older versions [119]. As mentioned in the introduction,
software tools such as MZmine and MS-DIAL are open-source and downloadable and were
used in clinical metabolomics studies. Additionally, if any self-written code is included,
making it open-source and downloadable is also recommended.

4.3. Use Virtual Machine or Software Container

Studies indicated workflow component differences hurt reproducibility [45,120]. Work-
flow components differences include software, code, operating system, and computer
hardware [45,120]. Notably, even if related information was reported as part of metadata,
it can be cumbersome to obtain previous software versions, and the specific operating
system used by the original research might not be at one’s disposal [121]. Fortunately,
software containerization and virtual machine (VM) enable researchers in the different
labs to run software tools and code with the same computational environment. A software
container is a lightweight, standalone, and executable package of software that includes the
software/code, its dependencies, and settings. Software containers encapsulate operating
system (OS) components, scripts, code, and data into a single package that can be shared
with others. Containerized software or code can be run with dependencies installed within
the container, which is isolated from packages or dependencies already installed in the host
system. Nowadays, both console-based software and software with graphical user interface
(GUI) can be containerized [122,123], and the software container supports both Linux-
and Windows-based applications [124]. Some commonly used software containerization
tools are Docker and Singularity [125,126], but Singularity has better support towards
high-performance computing [127]. However, software containers interface directly with
the host OS, reducing flexibility since software containers are specific to a given type of OS.
A VM does not rely on the OS of the host machine, and thus is more flexible. However, a
VM is preferred over a software container when a software whose running environment
is different from the host OS [125]. VM uses a hypervisor that sits between physical hard-
ware and virtualized environments to enable multiple virtual OS to be created from the
same hardware. Nevertheless, VM requires considerably more computational resources
than software containers; it needs more time for initialization and takes up more storage.
VirtualBox [128] is a popular and freely available hypervisor.

https://github.com/
https://bitbucket.org/product
https://about.gitlab.com/
https://about.gitlab.com/
https://github.com/lemaslab/reproducible_metabolomics_study_checklist
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4.4. Document Runtime Hardware Information

Hardware differences can still produce different results when running the same code
to process the same data [45]. Running code with software containerization or VM does not
fully insulate the environment from the underlying hardware. For example, researchers
may find their graphical user interface-accelerated code fails to produce the same results
on other machines due to hardware differences [45]. Therefore, it is also recommended to
record hardware information including but not limited to the model and number of central
processing units (CPUs), the model and number of graphics processing units (GPUs), the
amount of random-access memory (RAM) required for CPUs and GPUs.

4.5. Semantic Annotation for Workflow Components

Workflow decay is another factor that hurts reproducibility [129]. Workflow decay
means the workflow is not well-maintained and is outdated when a second researcher
wants to reproduce a previous study that used the workflow [130]. Notably, reporting
the metadata information of computational workflow used for the research cannot ensure
the workflow will not be outdated or unavailable at the time a second researcher is trying
to reproduce the study. Fortunately, semantic annotation of workflow components with
controlled vocabulary underlying an ontology can benefit workflow preservation and
protect the workflow from decay [130]. Even if the workflow is outdated, such annotations
may enable other researchers to create a similar workflow that may regenerate the original
results [131]. Table 1 illustrates some ontologies that can provide semantic annotation for
computational workflow. Specifically, Research Object Ontology annotates research objects
associated with a workflow such as the author, hypothesis, and conclusion. Workflow
Description Ontology describes workflow specifications such as input, output, and pa-
rameters of a process. Workflow Provenance Ontology describes the provenance traces
obtained by executing workflows. Research Object Evolution Ontology tracks the changes
of workflow objects [130]. OntoSoft [132], OntoSoft-VFF [133], and Software Description
Ontology [134] capture scientific software metadata. Description of a Software Project
(DOAP) ontology [132] can be used to annotate things like issues, bug tracking, and wiki
discussions of a software. EDAM ontology [135] can be used to annotate input data type,
input data format, output data type, output data format, and operation of a tool in the
workflow. Software Ontology (SWO) extended EDAM ontology and linked data types and
formats to a taxonomy of software [136]. WICUS ontology describes underlying hardware
and computational infrastructure [137]. To implement semantic annotation of workflows,
several semantic workflow development platforms were created by researchers, such as
jORCA/Magallanes [138], jABC/PROPHETS [139,140], WINGS [141], and APE [142]. Such
platforms can find workflows automatically based on the annotation; the technique is also
called automated workflow composition. Unlike other automated workflow composition
approaches such as searching through a workflow repository like myExperiment [143],
which may have an 80% probability to return a decayed workflow [144], automated work-
flow composition using annotations from an ontological-based controlled vocabulary
can discover and create new usable workflows. Automated workflow composition with
controlled vocabulary was implemented to several types of data, including proteomics,
genomics, and geographical data [131,145–147]; it can also be used for metabolomics data.
Therefore, semantic annotation of computational workflow allows the recreation of new
and similar in the case that the workflow in the original publication is obsolete, thus
addressing the issue of workflow decay, and multiple semantic workflow development
platforms were created to facilitate the process.
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Table 1. Ontologies that can provide semantic annotation for computational workflows.

Ontology Name Owl File

Research Object Ontology http://purl.org/wf4ever/ro#, accessed on 29 November 2021

Workflow Description Ontology http://purl.org/wf4ever/wfdesc#, accessed on 29 November 2021

Workflow Provenance Ontology http://purl.org/wf4ever/wfprov#, accessed on 29 November 2021

Research Object Evolution Ontology http://purl.org/wf4ever/roevo#, accessed on 29 November 2021

OntoSoft Ontology http://ontosoft-earthcube.github.io/ontosoft/ontosoft%20ontology/v1.0.1
/doc/ontosoft-v1.0.1.owl, accessed on 29 November 2021

Software Description Ontology https://w3id.org/okn/o/sd, accessed on 29 November 2021

DOAP Ontology http://usefulinc.com/ns/doap, accessed on 29 November 2021

EDAM Ontology http://edamontology.org/EDAM.owl, accessed on 29 November 2021

Software Ontology http://www.ebi.ac.uk/swo/swo.owl, accessed on 29 November 2021

WICUS Ontology http://vocab.linkeddata.es/wicus/hwspecs/hwspecs.owl, accessed on
29 November 2021

4.6. Use Workflow Automation or Literate Programming

Recently, Heil et al. suggested that reproducibility is not only about enabling a second
researcher to regenerate the results but also related to how fast or easy a second researcher
can get the result [45]. A study with results that can only be regenerated by consulting the
original author intensively will be less reproducible than a study with results that can be
recreated using one simple command line. In terms of reducing the effort of reproducing
the original results, literate programming and workflow automation are two feasible
techniques. Literate programming combines a narrative description of the research with
code. A document including code, narratives, and any outputs (e.g., tables, figures) of
the code will be produced after execution. To some extent, literate programming helps
readers understand exactly how a particular result was obtained. By reducing difficulties
of understanding among researchers, literate programming can facilitate greater trust in
computational findings [148]. Two popular tools for literate programming are Jupyter
Notebook [149] and knitr [150,151]. Jupyter Notebook is an open-source web application.
With Jupyter Notebook, researchers can create and share documents containing live code,
mathematical formulas and equations, and visualizations. Jupyter Notebook supports
several programming languages, including Python [152], R [153], and Shell [154]. Knitr is
similar to Jupyter Notebook but written in R programming language, which also gained
considerable popularity as a literate programming tool. On the other hand, workflow
automation also benefits reproducibility, which connects all processes in the workflow with
software or code. Workflow automation reduces hands-on steps, making it faster and easier
to regenerate the initial results, as well as reducing human error. Galaxy and Nextflow are
two workflow automation platforms that were used in metabolomics field. Galaxy is a web-
based scientific workflow automation platform that was widely used in the bioinformatics
area. Galaxy has a graphical user interface, making it easier for research scientists who do
not have computer programming experience [155]. Nextflow is a workflow automation
platform written with Groovy programming language [120]. Nextflow also supports several
workflow schedulers, making it suitable for high-performance computing and large-scale
data analysis. However, Nextflow is not friendly to a scientist with few programming
experiences. In summary, it is recommended for metabolomics researchers to provide
literate programming or automated workflow to enhance reproducibility.

5. Conclusions

Metabolomics is an emerging field and was widely used in clinical studies [153,156].
However, efforts towards improving the reproducibility of metabolomics data analysis
pipelines are still in their infancy. There was a clinical need for making clinical metabolomics

http://purl.org/wf4ever/ro#
http://purl.org/wf4ever/wfdesc#
http://purl.org/wf4ever/wfprov#
http://purl.org/wf4ever/roevo#
http://ontosoft-earthcube.github.io/ontosoft/ontosoft%20ontology/v1.0.1/doc/ontosoft-v1.0.1.owl
http://ontosoft-earthcube.github.io/ontosoft/ontosoft%20ontology/v1.0.1/doc/ontosoft-v1.0.1.owl
https://w3id.org/okn/o/sd
http://usefulinc.com/ns/doap
http://edamontology.org/EDAM.owl
http://www.ebi.ac.uk/swo/swo.owl
http://vocab.linkeddata.es/wicus/hwspecs/hwspecs.owl
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research reproducible. In this paper, we proposed a checklist by summarizing techniques
and tools that can enhance metabolomics research reproducibility. Unlike existing checklists
for improving reproducibility in other fields [26,27], which contain tens of items, our
proposed checklist only has eight items, making it concise and easy to follow. Each
item was explained in detail; tools corresponding to each item were also recommended.
However, the effectiveness of the checklist may still need to be tested and quantified in the
future. In conclusion, the proposed checklist may benefit authors, reviewers, editors, and
readers in the clinical metabolomics field by making studies more robust and reliable. More
efforts are needed from the scientific community to ensure reproducible metabolomics
research and to make metabolomics research results more reliable and trustworthy before
being applied in real clinical settings.
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